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It is demonstrated that the growth of the mixing zone generated by Rayleigh–Taylor
instability can be greatly retarded by the application of rotation, at least for low
Atwood number flows for which the Boussinesq approximation is valid. This result is
analysed in terms of the effect of the Coriolis force on the vortex rings that propel
the bubbles of fluid in the mixing zone.

1. Introduction
Rayleigh–Taylor instability (RTI) results from the application of a pressure gradient

in the direction opposite to a density gradient. If the variation of density in the fluid
is not great, then the development of the instability occurs with the penetration of
‘bubbles’ of higher density fluid into lower density fluid and vice versa. Visualised with
density isosurfaces, these bubbles appear as roughly spherical caps on mushroom-
shaped density intrusions. Three-dimensional images of these bubbles can be found
in a number of articles (cf. Linden, Redondo & Youngs 1994). The evolution and
interaction of numerous bubbles produces a mixing zone. If the advance of those
bubbles could be retarded or, better, if they could be kept from forming, then the
effects of RTI would be diminished.

A vortex ring is associated with each bubble. To a large extent, these rings determine
the evolution of the density intrusions (cf. Zabusky 1999). One way to hinder the
development and propagation of the bubbles is to destabilize the vortex rings that
drive them. In previous work on unstratified flow, we have shown that vortex rings can
be disrupted or prevented from forming if rotation is applied in a direction aligned
with the axis of the ring. We demonstrated this in both laboratory experiments and
matching numerical simulations (Verzicco et al. 1996). These results suggest that it
may be possible to slow or even eliminate RTI by the application of ambient rotation.
A similar effect would be that of flow curvature. Indeed, Sen & Storer (1997) found
that flow curvature can reduce the growth rate of RTI.

RTI is of interest in a wide variety of fields including geophysics, astrophysics,
engineering and plasma physics. Specific areas of relevance include mantle convection,
deep convection in the oceans, mixing during density overturns in the atmosphere
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and oceans, and the design of devices for controlled nuclear fusion. We do not have
space here to review the literature. However, we note that for exponentially stratified
viscous fluid, without diffusion, Hide (1956) showed with a normal modes analysis
that rotation decreases the maximum growth rate of the instability. But rotation could
not suppress it completely. We are not aware of similar studies that include the effect
of diffusion, but it seems likely that this addition will permit complete suppression.

Here we present the results of a series of numerical simulations demonstrating
that, indeed, ambient rotation suppresses RTI. In § 3, for cases with random initial
perturbations, we show that RTI can be delayed and its growth rate diminished by
rotation. Interestingly, we find that the effects of rotation occur even in the earliest
phase of the instability, that is even before the establishment of a mixing zone.
This suggests that it would be possible to understand the effect of rotation, at least
in the early phases, in terms of bubble formation. In Verzicco et al. (1996), our
understanding of the role of rotation on vortex dynamics came from a focus on the
late time evolution of the vortex ring in the rotating environment. There the focus
was on the interaction between the primary ring and secondary vorticity structures.
This interaction increased the radius of the ring and allowed cross-diffusion between
vortex structures. Both of these effects were shown to slow the advance of a vortex
ring. In contrast, here in § 4, we analyse the retarding role that rotation plays in the
early formation of the vortex ring. Further, we find that for high enough rotation rate
bubble formation is completely suppressed.

2. Numerical method and unperturbed background
Our experiments are on the incompressible Boussinesq equations using a finite-

difference staggered-mesh code with third-order Runge–Kutta time stepping. The
details of the numerical methods employed are explained at length in Orlandi (2000).
The computational domain is a cube, with vertical z-axis aligned along the direction
of gravity (−gẑ) and the angular rotation vector (Ωẑ). The horizontal (x, y) boundary
conditions are periodic and at the bottom and top there are rigid free-slip boundaries.
The unperturbed density profile is explicitly

ρ̄(z) = ρ1 + (ρ2 − ρ1)(1 + tanh(z/l))/2, (2.1)

with l fixed as L/80 where L is half of the domain height and ρ1 < ρ2. The code
provides more resolution in the region of the density gradient by using a stretched
grid in the z-direction (see Orlandi 2000, p. 13, equation 2.24, for clustering near z = 0
with the stretching coefficient a = 1.5). Except where noted otherwise, the number of
grid points in both horizontal periodic directions is 128, and in the vertical 193. The
effect of the resolution on the results was checked by comparisons with simulations
of resolution 97× 97× 129, which showed no significant differences. All of the results
presented here are in non-dimensional units with length scaled by L (the vertical and
horizontal coordinates run from −1 to 1), velocity scaled by Vg =

√
2LgA where A

is the Atwood number given by A = (ρ2 − ρ1)/(ρ2 + ρ1), and time by T = L/Vg . To
ensure the validity of the Boussinesq approximation, the Atwood number is assumed
to be small. We will report the density ρ in terms of a scaled variable θ that varies
between 0 and 1:

θ = (ρ− ρ1)/(ρ2 − ρ1). (2.2)

An important non-dimensional quantity for this study is the Rossby number Ro =
Vg/fL, where f = 2Ω. For all of the simulations presented here, the Reynolds number,
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Figure 1. Contour plots of the scaled density θ in a vertical cross-section (y, z-plane) at time t = 5.
The contour increment is ∆θ = 0.1. Both the vertical axis z and the horizontal axis y range from −1
to 1 (images have been cropped in the vertical direction). (a) Ro = ∞, (b) Ro = 1/4, (c) Ro = 1/8,
(d ) Ro = 1/12.

which we define as Re = LVg/ν, is 5000. We assume a single species flow with a
Prandtl number ν/κ = 1, where ν is the kinematic viscosity and κ the diffusivity, both
assumed constant.

3. Rotational suppression of the growth of the mixing zone
The first simulations that we will present are designed to demonstrate the degree

to which rotation delays RTI. Four simulations are presented with Ro = ∞, 1/4, 1/8
and 1/12 (where Ro = ∞ implies no rotation). In each case, the initial condition was
a state of no motion. The initial density field was as described above plus uniformly
distributed random noise on each grid point in the range −0.05 < z < 0.05 with an
r.m.s. level of 9% of the mean density. Figure 1 illustrates the efficacy of rotation in
damping the growth of the turbulent mixing zone; it is a vertical cross-section of the
three-dimensional density field at time t = 5. Panel (a) shows the extent and nature
of the mixing zone with no rotation. It shows a well-developed turbulent mixed zone
with many well-formed mushroom-shaped bubbles and elements of high/low-density
fluid that have been carried into the regions of low/high density. Similarly for (b)
except that with Ro = 1/4, the development of the mixing zone has not proceeded as
far. As illustrated in panel (c), with Ro = 1/8, no convincing mixing zone has been
established by t = 5; there are no fully developed bubbles, and the vertical extent of
the perturbations is much reduced compared to that in (a) and (b). Finally in (d )
we see that the effect of rotation with Ro = 1/12 has diminished the growth of the
perturbation so significantly that there is little that can yet be identified as bubble
formation.

To further quantify the effect of rotation on slowing the growth of the mixing
zone, we have computed an average profile θ̄(z, t) of the density field by performing a
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Figure 2. (a) Profile of θ̄, the horizontally averaged θ, vs. z at time t = 5. Dotted line, initial
condition; solid, Ro = ∞; long dashed, Ro = 1/4; dashed, Ro = 1/8; short dashed, Ro = 1/12.
(b) Thickness of the mixing zone vs. t2. The line types are as in (a) with an additional line
(chain-dashed) representing the similarity solution with slope 0.033 (see text). (c) Horizontal kinetic

energy spectrum as a function of horizontal wavenumber kh =
√
k2
x + k2

y at t = 10 for Ro = ∞.

The long and short dashed straight lines are graphs of k−5/3 and k−3.2 respectively. (d ) Total kinetic
energy KE vs. time (line types as in a).

horizontal average for each z. The result at t = 5 is shown in figure 2(a) for four values
of Ro. During the evolution, a thickness ∆ of the mixing zone can be computed by
calculating these profiles and then measuring the distance between two density values
near the extremes of the density field. We considered the evolution of the vertical
distance ∆ between θ̄ = 0.02 and 0.98. If the flow is sufficiently turbulent so that the
details of the initial conditions are irrelevant, then one expects similarity scaling such
that ∆ = αt2, where α is a constant to be determined empirically (cf. Linden et al.
1994). For comparison with previous work, we plot ∆ versus t2 in figure 2(b). For
each Ro, we observe a period of slow growth at first that can be understood as simple
diffusive spreading of the density gradient. This is followed by a period of rapid
growth once the instability begins. With decreasing Ro, the time of onset of instability
increases and the maximum growth rate decreases. At late times, particularly in the
cases Ro = ∞ and 1/4, the growth rate decreases noticeably near the end of the runs
because the evolution is affected by the finite domain size. According to Linden et
al. (1994) the period of t2 scaling should occur after the initial rapid rise in ∆. In
a simulation of their laboratory experiment, they found a slope α = 0.033. In our
figure, we have added a straight line with that slope. This helps to indicate that for
the Ro = ∞ case that there is a period of such scaling.

In this study the influence of the top and bottom boundaries is not a primary
concern. Rather, we are interested in the development of the instability before satu-
ration effects become apparent. To test the influence of the location of the boundaries,
we repeated the simulation for Ro = ∞ in a domain of double the vertical extent,
also increasing to 256 the number of grid points in the vertical. The evolution of the
mixing zone was essentially the same as shown above, except in that the appearance
of saturation effects was delayed. In addition, we compared both free-slip and no-
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Figure 3. Isolated bubble and associated vorticity component ωx in a y, z cross-section through the
centre (x = 0) of the bubble at t = 4. The thick line is the θ = 0.5 contour. The thin solid/dashed
lines are contours of positive/negative ωx. Only a portion of the computational domain is shown.
(a) Ro = ∞, vorticity contour interval 7.5, (b) Ro = 1/4, contour interval 2.5.

slip boundary conditions and found no significant effect during the time of the
rapid growth of the instability. In figure 2(c), we show the horizontal kinetic energy
spectrum computed in a horizontal cross-section in the middle of the mixing zone
(i.e. at z = 0) at t = 10 for Ro = ∞ for the case with double the vertical size and
free-slip boundaries. For large scales, it appears that −5/3 scaling holds with a k−3.2

fall-off at small scales. This is similar to the behaviour found by Linden et al. (1994)
in their concentration fluctuation spectrum.

The growth of kinetic energy shown in figure 2(d ) gives another picture of the
unfolding of the instability. There is a well-defined period of exponential growth even
before t = 2.5 when diffusion still dominates. We find that the maximum growth
rates decrease almost linearly with Ro. The fact that the decrease of the growth rate
with increasing Ro begins from the earliest moments suggests that we may be able
to understand something about the effects of rotation, at least in the early phase,
without recourse to turbulence theory. We pursue this idea in the next section.

4. Suppression of the growth of a single bubble
In an attempt to understand the role of rotation in suppressing the growth of the

mixing zone, we have performed a series of simulations of the growth of a single
isolated bubble for different values of Ro. Each simulation was initialised with a
circularly symmetric perturbation which bent the isopycnals (equal density surfaces)
slightly upward in the middle of the domain. Specifically, we added the following
small-amplitude perturbation to the unperturbed scaled density θ in (2.1):

θ′ = a exp((−x2 − y2)/b2) exp(−z2/c2) (4.1)

with a = −0.025, b = 0.05 and c = 0.01. These values were chosen through experimen-
tation which showed that the proximity of the walls did not affect the growth of the
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Figure 4. Schematic illustrating the effect of Coriolis force in the early evolution of a bubble. (a) A
vertical cross-section illustrating the effect of the baroclinic torque exerted on the fluid due to the
initial bending of an isopycnal. The arrows are the velocities induced by the action of gravity. This
creates a vorticity component ωφ around the interface in between each pair of arrows creating the
vortex ring shown in (c), where a vertical cross-section is taken to reveal the flow structure. In (c)
the extended solid arrows on the rightmost circle show the direction of flow induced by ωφ. The
dashed arrows, which represent flow directly into and out of the page, show the change in velocity
induced by the Coriolis force. The application of this force to that secondary flow creates a flow
directly counter to the original flow indicated by the solid arrows. (d ) The forces acting to create
the flow. The large circle is a vertical cross-section of the vortex ring. The large arrows represent
the buoyancy forces. � and ⊗ indicate the Coriolis force out of and into the page respectively.

bubble. In figure 3, we show a comparison between the state of development for the
resulting bubble at t = 4 for Ro = ∞ and 1/4. The figures are vertical cross-sections
(y, z-plane) through the centre of the bubbles. In addition to indicating the position
of the middle of the density gradient (the θ = 0.5 contour line), we also show contours
of the x-component of the relative vorticity ωx. In the case with no rotation (panel
(a), Ro = ∞), by t = 4 a mushroom-like cap has formed on the advancing bubble
and there is a strong vortex ring inside this cap. In contrast, in the case with rotation
(panel (b), Ro = 1/4), at t = 4 a cap structure has not yet formed, and the vorticity
field is much weaker. Clearly rotation slows the growth of the bubble. Note that, for
each case shown, if we change the sign of the initial density perturbation, the result
would be a descending ‘bubble’ but with the same shape as that shown in figure 3
and with vorticity of opposite sign. This is a symmetry of the Boussinesq equations,
that is of the low-Atwood-number approximation.

To gain some insight into the role that rotation plays in slowing the advance of a
single bubble, it is convenient to introduce cylindrical coordinates as in figure 4(b).
The bubble grows from the initial circularly symmetric (φ-independent) perturbation
of the iso-density surface shown in figure 4(a). Note that there is a gradient ∂ρ/∂r
not present in the unperturbed system. The arrows indicate the velocities induced by
the action of gravity or, in other words, the flow induced by the baroclinic torque.
This torque creates ωφ > 0 in between the opposing arrows, which is the start of the
formation of the vortex ring shown in (c). A vertical cross-section is taken through the
centre of the ring to better reveal the flow structure. The small arrows on the leftmost
circle, and the extended solid arrows on the rightmost circle show the direction of
the flow induced by ωφ. Once there is a horizontal flow component, the Coriolis
force will act, and its effect will be to turn horizontal velocities to the right of their
instantaneous direction. For the upper/lower arrow on the rightmost circle this means
this flow is turned out/in from the plane of the figure as we have indicated with the
dashed arrows. This secondary velocity field constitutes a new component of vorticity
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ωr > 0, which never occurs in the Ro = ∞ case. The Coriolis force continues to bend
the flow ‘to the right’. If we now imagine that the dashed arrows are bent to their right,
we see that the Coriolis force induces a flow in a direction directly opposite to that
associated with the original vortex. Thus the Coriolis force tends to create a vorticity
component ωφ of opposite sign to that of the ωφ initially created by the density
disturbance. Figure 4(d ) displays the forces acting to create the flow shown in (c).

One can see this effect in the Boussinesq equations most easily when they are
written in cylindrical coordinates. There is a simplification since the fields for the
single bubble problem are independent of the angle φ for all time. Thus we can write
the evolution equations for the vorticity field in the inviscid non-diffusive case as

∂ωr

∂t
= f

∂ur

∂z
+ (∇× (u× ω))r, (4.2)

∂ωφ

∂t
= −fωr +

g

ρ0

∂ρ

∂r
+ (∇× (u× ω))φ, (4.3)

∂ωz

∂t
= f

∂uz

∂z
+ (∇× (u× ω))z, (4.4)

∂ρ

∂t
= −ur ∂ρ

∂r
− uz ∂ρ

∂z
, (4.5)

1

r

∂rur

∂r
= −∂uz

∂z
, (4.6)

where ρ0 = (ρ1 + ρ2)/2 (the average density). The last equation expresses the vanish-
ing of the divergence and has been used to obtain (4.4). Also we have used the
φ-independence to substitute ωr for −∂uφ/∂z in (4.3).

For the moment, let us ignore the effect of the nonlinear terms ∇ × (u × ω) and
ur∂ρ/∂r which are of at least quadratic order in an amplitude expansion. Now the
effects described with the schematic diagram (figure 4) can be seen in these equations.
At t = 0, the only non-vanishing term on the right-hand side of the evolution equations
is (g/ρ0)∂ρ/∂r in (4.3). This term is the initial source of ωφ. Once generated, this
vorticity component induces positive ∂ur/∂z as explained above, and that field in turn
generates positive ωr through (4.2). This ωr then diminishes the growth of ωφ as seen
in (4.3). If we look at the fields early in the evolution of the single bubble, we can
follow the emergence of each of these fields and their effects. In figure 5 we present
an r, z cross-section of these fields at t = 0.5. Since the flow is circularly symmetric,
an r, z cross-section is representative of the entire ring.

Our analysis can be made more precise with a small time expansion. We develop
each of the velocities and the density field in a Taylor series in time. These are
substituted into the evolution equations and orders in time are matched. In this way
we find that ρ, ωr and ωz are even in time, while ωφ is odd, at least up to order t4.
For example, we find

ωφ = ω
(1)
φ t+ ω

(3)
φ t

3/3! + O(t4), ρ = ρ(0) + ρ(2)t2/2! + O(t4), (4.7)

where

ω
(1)
φ =

g

ρo

∂ρ(0)

∂r
, (4.8)
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Figure 5. Contour plots with Ro = 1/4 at t = 0.5 of the fields most relevant to the discussion of
the early evolution of the single bubble in an r, z cross-section. (a) ωφ; (b) g∂ρ/∂r, the initial source
of ωφ; (c) f∂ur/∂z, a field induced by ωφ and in turn a source of ωr; (d ) −fωr , the Coriolis term
retarding the growth of ωφ (see text). The contour increments are: (a) 0.0096, (b) 0.038, (c) 0.022
and (d ) 0.026. The zero contour is not drawn. Dashed contours represent negative values. Only a
small portion of the computational domain is represented.

and

ω
(3)
φ = −f2 ∂u

(1)
r

∂z
− g

ρo

∂

∂r

(
u(1)
r

∂ρ(0)

∂r
+ u(1)

z

∂ρ(0)

∂z

)
−2

∂

∂z

(
u(1)
z ω

(1)
φ

)
−2

∂

∂r

(
u(1)
r ω

(1)
φ

)
. (4.9)

Note that here we have now explicitly included the effects of the nonlinear terms that
were ignored in our previous discussion. The velocity fields u(1)

r and u(1)
z are those

induced by the vorticity ω
(1)
φ . With the aid of the Green function for this problem

these velocities could be written as a linear functional of ω(1)
φ . However, introducing

Green’s function is a complication that is not necessary for present purposes. Here it
is sufficient to note that there is no dependence on f in any of the O(t)-fields since
they depend only on the initial density perturbation. Thus, up to O(t3) the effect of
the Coriolis force on ωφ appears only in the first term on the right-hand side of (4.9).
The reason why in this term f appears raised to the second power is related to the
fact that it requires both the generation of a uφ-component of velocity and then a
secondary ur-component to affect the field ωφ as discussed above. The sign of this
term can be deduced from the schematic diagram of the vortex ring in figure 4. There
the ring is drawn with the direction of flow appropriate for ωφ > 0, and it illustrates
that ∂ur/∂z > 0 in that case. Hence, the sign of the f2-term in (4.9) is opposite to

that of ω(1)
φ .

We can make further progress by assuming that the amplitude of the perturbation
is small, so that terms quadratic in amplitude in (4.9) can be ignored. Let us write
the density perturbation as ρ′(r, z) (i.e. ρ = ρ̄+ ρ′). Since ω(1)

φ depends on the density

only through the r-derivative, it is linear in ρ′. Consequently, u(1)
r and u(1)

z are also
at lowest order linear in ρ′. By examining all terms in (4.9), we find all but two are
second order in ρ′, and can thus be neglected if the ratio ρ′/ρ̄ is sufficiently small.
This leaves

ω
(3)
φ = −f2 ∂u

(1)
r

∂z
+N2 ∂u

(1)
z

∂r
, (4.10)

where we have used the traditional notation

N2 = − g

ρo

∂ρ̄

∂z
, (4.11)

but must add the caution that in this case N2 is negative (i.e. the Brunt–Väisällä
frequency is imaginary). To make further progress, we could take the initial radius of
the bubble to be sufficiently large that, in a vertical cross-section, the flow near the
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Figure 6. Graphs of the growth of the kinetic energy for a single bubble. Solid line, Ro = ∞; long
dashed, Ro = 1/4; dashed, Ro = 1/8; short dashed, Ro = 1/12; chain-dashed, Ro = 1/24.

centre of the core of the initial vortex ring would be nearly two-dimensional and the
two-dimensional divergence would nearly vanish. Furthermore, with this assumption
we can ignore the self-advection of the ring which diminishes with ring radius. Under
these conditions, for flow near the centre of the core, we can write

∂u(1)
r /∂z ≈ −∂u(1)

z /∂r ≈ ω(1)
φ /2. (4.12)

Finally, we have

ω
(3)
φ = −(N2 + f2)ω(1)

φ /2. (4.13)

Thus the growth of the instability due to negative N2 is diminished by rotation. It
is interesting to note that this solution to O(t3) is equivalent to the solution to the
simple wave equation

∂2ωφ

∂t2
= − 1

2
(N2 + f2)ωφ. (4.14)

This suggests that the growth rate for the early evolution could be obtained directly
from the dispersion relation for internal waves in a uniformly stratified medium (Gill
1982):

σ2 =
N2 + f2(kz/kh)

2

1 + (kz/kh)2
, (4.15)

where kz and kh are the vertical and horizontal wavenumbers of the disturbance, and
σ the frequency. In our case the ‘disturbance’ is the vortex ring and we have assumed
that the core is circular which is equivalent to taking kz = kh. Substituting this into
the dispersion relation gives the same result as in (4.14).

For the cases presented here, non-dimensionally N2
max = −80. Figure 6 shows

the early evolution of the kinetic energy of the flow for a single bubble with non-
dimensional f = 0, 4, 8, 12 and 24 (non-dimensionally Ro = 1/f). Note that the
early growth for the large Rossby number cases (small f) is nearly quadratic in time.
This includes the self-advection of the vortex ring. If ωφ grows as t then there is, in
addition to the circular motion about the core, a self-advection velocity uz which is
inversely proportional to the radius of the ring (cf. Verzicco et al. 1996). This part
of the velocity has been neglected in our large ring approximation (4.12) leading to
(4.13). In any case, the theory suggests a crossover in behaviour near f =

√
80 ≈ 8.9

(Ro ≈ 0.11). From figure 6, it appears that there is indeed a change in behaviour
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as f increases, with cross-over occurring between Ro = 1/12 and 1/24. At later
times, the perturbation kinetic energy for the Ro = 1/24 case continues to decay
while the density gradient diffuses. Thus the instability is completely suppressed.
For simulations with random initial density perturbations as in figure 1, we found
complete suppression with Ro = 1/48.

Although helpful in providing a mechanistic understanding of the initiation of
the instability, (4.13) includes neither viscosity nor diffusion. Recalling Hide’s (1956)
work, it appears that the presence of rotation and viscosity alone cannot completely
suppress the instability. Here we have found that rotation with viscosity and diffusion,
at least in the Boussinesq approximation, can completely suppress RTI.
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